Math 10B with Professor Stankova
Quiz 11; Tuesday, 4/10/2018
Section \#211; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE It is possible for a BVP to have exactly 2 solutions.

Solution: A BVP can have 0,1 , or infinitely many solutions and no other option.
2. TRUE False If y_{1}, y_{2} are two solutions to a linear homogeneous differential equation, then $y_{1}+y_{2}$ is.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (5 points) Find the general solution to $y^{\prime \prime}+2 y^{\prime}+2 y=0$.

Solution: This is a second order linear homogeneous differential equation with constant coefficients. So we can solve it by solving the characteristic equation which is $r^{2}+2 r+2=0$ and that gives us $r=-1 \pm i$. Therefore, the general solution is

$$
y(t)=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)
$$

(b) (4 points) Give an IVP involving a second order differential equation such that $y(t)=e^{2 t}+e^{t}$ is a solution.

Solution: Since we have $e^{2 t}$ and e^{t}, this tells us that the roots are $r=1,2$ and hence the characteristic equation is $(r-1)(r-2)=r^{2}-3 r+2=0$. So the differential equation is $y^{\prime \prime}-3 y^{\prime}+2 y=0$. The initial conditions are $y(0)=e^{0}+e^{0}=2$ and $y^{\prime}(0)=2 e^{0}+e^{0}=3$.
(c) (1 point) Prove that $\tan (\theta)=\frac{1}{i} \cdot \frac{e^{i \theta}-e^{-i \theta}}{e^{i \theta}+e^{-i \theta}}$.

Solution: We use Euler's formula which says that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$. Then, we have that

$$
\frac{1}{i} \cdot \frac{e^{i \theta}-e^{-i \theta}}{e^{i \theta}+e^{-i \theta}}=\frac{1}{i} \frac{\cos (\theta)+i \sin \theta-(\cos (-\theta)+i \sin (-\theta))}{\cos (\theta)+i \sin \theta+(\cos (-\theta)+i \sin (-\theta))}
$$

Now we use that \cos is even and \sin is odd to get that $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$ so the above is

$$
=\frac{1}{i} \frac{2 i \sin (\theta)}{2 \cos (\theta)}=\frac{\sin \theta}{\cos \theta}=\tan \theta
$$

